Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
numapprox[confracform] - convert a rational function to continued-fraction form
Calling Sequence
confracform(r)
confracform(r, x)
Parameters
r
-
procedure or expression representing a rational function
x
(optional) variable name appearing in r, if r is an expression
Description
This procedure converts a given rational function r into the continued-fraction form which minimizes the number of arithmetic operations required for evaluation.
If the second argument x is present then the first argument must be a rational expression in the variable x. If the second argument is omitted then either r is an operator such that yields a rational expression in y, or else r is a rational expression with exactly one indeterminate (determined via indets).
Note that for the purpose of evaluating a rational function efficiently (i.e. minimizing the number of arithmetic operations), the rational function should be converted to continued-fraction form. In general, the cost of evaluating a rational function of degree when each of numerator and denominator is expressed in Horner (nested multiplication) form, with the denominator made monic, is
mults/divs and adds/subtracts
whereas the same rational function can be evaluated in continued-fraction form with a cost not exceeding
The command with(numapprox,confracform) allows the use of the abbreviated form of this command.
Examples
The Horner form can be evaluated in 4 mults/divs
whereas the continued-fraction form can be evaluated in 2 mults/divs
See Also
convert/confrac, indets, numapprox[hornerform]
Download Help Document