Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
algcurves[puiseux] - determines the Puiseux expansions of an algebraic function
Calling Sequence
puiseux(a, x=p, n)
puiseux(f, x=p, y, n)
puiseux(f, x=p, y, n, T)
Parameters
a
-
algebraic function in RootOf form
x=p
gives the point around which the expansions are computed
n
number specifying the desired accuracy of the expansions
y
variable
f
square-free polynomial in x and y
T
(optional) variable, used for obtaining a different output syntax
Description
A square-free polynomial f of degree in the variable y with coefficients in a field has roots in the algebraic closure of the field . These roots are called the Puiseux expansions of f at x=p. Each Puiseux expansion is of the form for some integer ( is called the ramification index of the Puiseux expansion), and some integer and elements in the algebraic closure of .
The polynomial f must be square-free, otherwise the puiseux procedure does not work.
If f is irreducible then f gives an algebraic extension of . Instead of giving f, this algebraic extension can also be specified with a RootOf a of f. This a can be viewed as a multivalued function in x. The Puiseux expansions give the local expansions of this multivalued function.
The procedure puiseux determines the field from the input. The groundfield of the computation is the smallest field such that f and p are in .
The Puiseux expansions are only computed up to conjugation over . So if a number of expansions are algebraically conjugated over then only one of these expansions is given.
The Puiseux expansions are computed modulo . So if for instance n=10, then the term would be computed, but not the term .
If n=0 then the expansions are not computed modulo , but in this case the number of terms that is computed is precisely the number that is needed to distinguish the expansions from the other expansions. If n='minimal' then the same output is given.
To avoid an output containing fractional powers of x one can specify a fifth argument T. Then the Puiseux expansions in the output are represented in a different way, namely as
So then x and y are expressed in terms of a local parameter.
Note: The Maple "alias" function does not recognize an alias in terms of another alias. Therefore, you must not use nested aliases for algebraic numbers because then the puiseux algorithm is not able to construct the field L over which the algebraic function is defined.
Examples
To get all 8 Puiseux expansions substitute all conjugates over of and in this set.
See Also
series
Download Help Document