Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
algcurves[Siegel] - use Siegel's algorithm for reducing a Riemann matrix
Calling Sequence
Siegel(B)
Parameters
B
-
Riemann matrix
Description
A Riemann matrix is a symmetric matrix whose imaginary part is strictly positive definite. In the context of algebraic curves, such a matrix is obtained as a normalized periodmatrix of the algebraic curve.
A Siegel transformation is a transformation from the canonical basis of the homology of a Riemann surface to a new canonical basis of the homology on the Riemann surface such that:
The real part of the new Riemann matrix has entries that are less than or equal to .
The imaginary part of B is strictly positive definite. Then it can be decomposed as . The columns of T generate a lattice L. Then
The length of the shortest element of L has a lower bound of ,
and
: {, an integer vector} has an upper bound depending only on R and g (=dimension of B) (thus not on B).
The Siegel(B) command returns a list where is the new Riemann matrix, and is the symplectic transformation matrix on the canonical basis of the homology such that the Riemann matrix in the new basis is . If B is a by matrix, then is a by matrix. If , where , and are by matrices, the new Riemann matrix is .
Examples
See Also
algcurves[homology], algcurves[periodmatrix], RiemannTheta
References
Deconinck, B., and van Hoeij, M. "Computing Riemann Matrices of Algebraic Curves." Physica D Vol 152-153, (2001): 28-46.
Siegel, C. L. Topics in Complex Function Theory. Vol. 3. Now York: Wiley, 1973.
Download Help Document