Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Probabilistic Algorithm Control in Maple
Several algorithms in Maple have a probabilistic implementation of Monte-Carlo type. This means that the output of the algorithm may be incorrect, but with (controllably) very low probability. Typically these are algorithms that compute values modulo a sequence of primes, then perform reconstruction to obtain an integer or rational result. Termination is controlled by either bounding the product of the primes required to reconstruct the result (thus making the algorithm deterministic) or terminating when the reconstructed result does not change for several primes in a row (thus making the output probabilistic). Probabilistic algorithms are useful when it is not possible to efficiently compute a good bound.
In cases where the deterministic bound can be poor, but is not expensive to compute, a competing bounds model is used, and the algorithm terminates when either the probabilistic bound or deterministic bound is met, whichever comes first.
Algorithms with this type of probabilistic implementations include:
Determinant: integer Matrices
LinearSolve: integer Matrices
CharacteristicPolynomial: integer Matrices
Eigenvalues: uses CharacteristicPolynomial
resultant: bivariate with integer coefficients
In cases where the deterministic bound can be expensive to compute (as expensive or more expensive than computing the actual result) only the probabilistic bound is used by default, and the deterministic bound can only be used if the probabilistic aspect of the algorithm is disabled.
resultant: univariate with integer coefficients
The probabilistic behavior of these functions can be controlled by setting the environment variable. The value of may be set as follows:
true or unset: probability bound is set to
false or 0: probability bound is set to , meaning the algorithm is deterministic
numeric value: this must be a value between and , and sets the probability bound
Note that in many cases the deterministic bound can be arbitrarily larger than the problem requires, and in these cases the use of the probabilistic approach can achieve great gains over a pure deterministic implementation. Setting _EnvProbabilistic:=false can cause extreme slowdowns for many computations.
Examples
Computation of the univariate resultant of two cyclotomic polynomials
Without the probabilistic approach, this is much more expensive
and in fact computation of the resultant bound alone requires more than 10 times the total time required to compute the probabilistic answer on this extreme example.
See Also
LinearAlgebra[CharacteristicPolynomial], LinearAlgebra[Determinant], LinearAlgebra[LinearSolve], resultant
Download Help Document