Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
PolynomialIdeals[PrimaryDecomposition] - compute a primary decomposition of an ideal
PolynomialIdeals[PrimeDecomposition] - compute a prime decomposition of the radical of an ideal
Calling Sequence
PrimaryDecomposition(J, k)
PrimeDecomposition(J, k)
Parameters
J
-
polynomial ideal
k
(optional) field extension
Description
The PrimaryDecomposition command constructs a finite sequence of primary ideals whose intersection equals the input J. Likewise the PrimeDecomposition command constructs a sequence of prime ideals whose intersection is equal to the radical of J. Calling PrimeDecomposition(J) is faster but otherwise equivalent to calling PrimaryDecomposition(Radical(J)).
By default, ideals are factored over the domain implied by their coefficients - usually the rationals or the integers mod p. Additional field extensions can be specified with an optional second argument k, which can be a single RootOf or radical, or a list or set of RootOfs and radicals.
The output of these commands is not canonical, and may not be unique. However, a Groebner basis is stored for each ideal in the sequence so the Simplify command can be used at no additional cost.
The algorithms employed by these commands require polynomials over a perfect field. Infinite fields of positive characteristic are not supported. Over finite fields, only zero-dimensional ideals can be handled because the dimension reducing process generates infinite fields.
Compatibility
The PolynomialIdeals[PrimaryDecomposition] and PolynomialIdeals[PrimeDecomposition] commands were updated in Maple 16.
Examples
See Also
Groebner[Solve], PolynomialIdeals, PolynomialIdeals[IdealContainment], PolynomialIdeals[Intersect], PolynomialIdeals[IsPrimary], PolynomialIdeals[IsPrime], PolynomialIdeals[Radical], PolynomialIdeals[Simplify], PolynomialIdeals[ZeroDimensionalDecomposition]
References
Gianni, P.; Trager, B.; and Zacharias, G. "Grobner bases and primary decompositions of polynomial ideals." J. Symbolic Comput. Vol. 6, (1988): 149-167.
Download Help Document