Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Physics[Vectors][DirectionalDiff] - the directional derivative
Calling Sequence
DirectionalDiff(A, B_)
Parameters
A
-
any algebraic (vectorial or scalar) expression
B_
a vector
Description
DirectionalDiff(A, B_) computes the directional derivative of in the direction of , that is, the scalar product of a unitary vector in the direction of times Nabla - the differential operator - applied to the function A. Two cases can happen:
is not a vector. Hence
is a vector. Hence
The %DirectionalDiff is the inert form of DirectionalDiff, that is: it represents the same mathematical operation while holding the operation unperformed. To activate the operation use value.
Examples
The definition of directional derivative
Directional derivative in spherical coordinates
Directional derivative of a vector function
Note that, when the vector which defines the direction (the second argument) is projected over one coordinate system, the function being differentiated is expected to be expressed using the same coordinate system; otherwise an error interruption happens and a corresponding message is displayed
Error, (in Physics:-Vectors:-DirectionalDiff) vectors must be projected over one and the same base
For this example, correct input could be
See Also
Identify, Nabla, operations, Physics, Physics conventions, Physics examples, Student[MultivariateCalculus][DirectionalDerivative], tensor/directional_diff, VectorCalculus[DirectionalDiff]., Vectors, Vectors[`.`]
Download Help Document