Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Physics[Psigma] - the Pauli's 2 x 2 sigma matrices
Calling Sequence
Psigma[n]
Parameters
n
-
an integer between 0 and 4, or an algebraic expression representing it, identifying a Pauli matrix
Description
The Psigma[n] command represents the three Pauli matrices; that is, the set of Hermitian and unitary matrices:
where is the imaginary unit (to represent it with a lowercase , see interface,imaginaryunit). Together with , representing the 2 x 2 identity matrix, the Pauli matrices form an orthogonal basis. The matrices are displayed as .
When multiplied by the imaginary unit, these matrices are a realization of the Lie algebra of the SU(2) group, which is isomorphic to the Lie algebra of SO(3). So, the are also a matrix realization of infinitesimal rotations in 3D space, hence serving as representation for the 3D angular momentum operator in Physics.
The Pauli matrices satisfy the commutation relations , where is the Levi-Civita symbol, and range from 1 to 3. The also satisfy the anticommutation relations , where is the Kronecker delta. Those two relations can be written as .
For from 1 to 3, the Pauli matrices satisfy , and (the 2 x 2 identity matrix), where Det represents the determinant, and Trace represents/computes the trace. In the context of the Physics package (see conventions), you can also use the index 0, as in , and it will be automatically mapped into .
Examples
See Also
conventions, Physics, Physics conventions, Physics examples, Physics/*, Trace
Download Help Document