Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DifferentialGeometry:-Tools[DGscalar, DGvolume, DGzero]
Calling Sequence
DGzero(keyword1, options)
DGvolume(keyword2, options)
DGscalar(keyword3, options)
Parameters
keyword1
-
a string, one of: "biform", "form", "vector", "tensor"
keyword2
a string, one of: "biform", "form"
keyword3
a string, one of: "biform", "form", "tensor"
options
each command admits a defined frame name as an optional last argument
Description
The command DGzero creates a zero biform, form, vector or tensor. The degree of the form or the index type of the tensor is specified as a second argument. This command is useful when, for example, a tensor T is to be computed recursively as sum of tensors.
The command DGvolume creates the standard top-dimensional form on a manifold M or a biform of top degree horizontal on the jet space J^k(E), where E is a fiber bundle over a base manifold M. It is convenient to use this command whenever a Lagrangian for some variational problem is to be defined as a biform of top horizontal degree on the jet space. The command DGvolume accepts as a second optional argument a Maple expression k, where DGvolume(keyword2, k) = k &mult DGvolume(keyword2).
The command DGscalar constructs a degree 0 form, a rank 0 tensor, or a biform of degree [0, 0].
The command DGscalar accepts as a second optional argument a Maple expression k, where DGscalar(keyword3, k) = k &mult DGscalar(keyword3).
The command DGzero is part of the DifferentialGeometry:-Tools package, and so can be used in the form DGzero(...) only after executing the commands with(DifferentialGeometry) and with(Tools) in that order. It can always be used in the long form DifferentialGeometry:-Tools:-DGzero. The commands DGvolume and DGscalar work the same way.
Examples
Define some manifolds.
Example 1.
Create the zero vector for the current frame.
Example 2.
Create the zero vector on the manifold M.
Example 3.
Create the zero 2-form for the current frame.
Example 4.
Create the zero type (1, 2) tensor on the manifold M.
Example 5.
Create the zero type (1, 2) tensor on the manifold E.
Example 6.
Create the zero type (2, 2) biform on the jet space of E.
Example 7.
Create the top degree form on M with coefficient exp(- x^2 - y^2).
Example 8.
Represent the Maple expression ln(x) as a degree 0 form on M.
_DG([["form", M, 0], [[[], ln(x)]]])
See Also
DifferentialGeometry, Tools, DGform
Download Help Document