Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[varparam] - find the general solution of an ODE by the method of variation of parameters
Calling Sequence
varparam(sols, v, ivar)
Parameters
sols
-
list of solutions to the corresponding homogeneous equation
v
right hand side of the original ODE
ivar
independent variable
true
(optional) flag to return only the particular solution
Description
The varparam routine is used to find a general solution of an ordinary differential equation (ODE) by the method of variation of parameters. In the event that no solution form can be generated (that is, if the Wronskian of the solution list sols is zero), then FAIL is returned. Otherwise, an general solution is generated, with indexed global constants _C.
The list sols must be a list of linearly independent solutions to a corresponding homogeneous ODE. The second argument, v, is the right-hand-side of a linear ODE where it is assumed that the coefficient of the highest derivative is equal to one. If this right-hand-side is zero, then 0 is the only particular solution.
If a fourth argument true is added, the routine returns only the particular solution.
This function is part of the DEtools package, and so it can be used in the form varparam(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[varparam](..).
Examples
Here is an example using the general formula in the order 2 case:
You can obtain a specific particular solution in the order 2 case:
Here is another way to get the same information:
See Also
DEtools, dsolve
Download Help Document