Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[super_reduce] - compute a super-irreducible form of a linear differential system
DEtools[moser_reduce] - compute a Moser-irreducible form of a linear differential system
Calling Sequence
super_reduce(A, x, p, u)
super_reduce(A, x, p, u, T, invT)
moser_reduce(A, x, p, u)
moser_reduce(A, x, p, u, T, invT)
Parameters
A
-
square matrix with rational function entries
x
independent variable of the system
p
irreducible polynomial in x or the symbol infinity
u
name
T
invT
Description
Consider the linear differential system
For a rational function matrix with the transformation
leads to a new system . One has
The matrices A and are said to be equivalent.
The super_reduce function computes a matrix equivalent to A in a special form, called super-irreducible at p. The output is a list of two elements. The first is the super-irreducible matrix; the second gives information about the integer slopes and Newton polynomials of the Newton polygon of the computed system. It is a list of couples, the first element of which is an integer (the slope) and the second a polynomial in u (the Newton polynomial associated with the slope).
The moser_reduce function computes a matrix equivalent to A which is Moser-irreducible at p. This is an equivalent matrix of minimal pole order. The output is similar to the super_reduce function, but only the Newton polynomials associated with the two biggest slopes are returned.
If T and invT are passed as arguments, they are assigned to the transformation matrix T and their inverse which transforms A to the super-irreducible (Moser-irreducible) matrix.
These functions are part of the DEtools package, and so they can be used in the form super_reduce(..) and moser_reduce(..) only after executing the command with(DEtools). However, they can always be accessed through the long form of the command by using DEtools[super_reduce](..) or DEtools[moser_reduce](..).
Examples
Consider the following matrix:
The pole order of this matrix at the point is . The Moser algorithm computes an equivalent matrix of minimal pole order.
Here, the pole order is now . The super reduction algorithm computes a matrix which is Moser-irreducible and moreover the minimum of the valuations of each column (or equivalently, each row) is minimal. This also gives as additional information the integer slopes of the Newton polygon and the associated Newton polynomials.
Check whether the matrix T is the correct transformation matrix:
If p is an irreducible polynomial, the computations are done for all roots of p simultaneously. The transformation matrices and hence the transformed matrix do not involve algebraic extensions over the ground field.
See Also
DEtools
References
Pfluegel, E. "An Algorithm For Computing Exponential Solutions of First Order Linear Differential Systems." In Proceedings of ISSAC '97, pp. 164-171. Edited by Wolfgang Kuchlin. New York: ACM Press, 1997.
Download Help Document