Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[parametricsol] - computes parametric solutions for Ordinary Differential Equations
Calling Sequence
parametricsol(ODE, v, Lie, explicit, <other options>)
Parameters
ODE
-
first order differential equation
v
optiona, dependent variable of the ODE, required when not obvious
Lie
optional, to request the use of symmetry methods when computing parametric solutions for 1st order ODEs
explicit
optional, for 1st order ODEs, to request the removal of the parameter used to express the parametric solution
<other options>
the optional arguments explained in dsolve,Lie, in connection with using Lie methods to compute the parametric solution
Description
parametricsol computes parametric solutions mainly for nonlinear ODEs, although the methods implemented applies as well to linear ODEs. Two methods are implemented:
Some 1st order ODEs fit a pattern for which a parametric solution, as explained in odeadvisor[parametric], can be sought. This is the default method tried for 1st order ODEs.
More general, 1st and higher order ODEs, for which a as many point symmetries as the differential order, forming a group, can be computed, can always have their general solution represented in parametric form (see DEtools[reduce_order]). This is the default method for 2nd and higher order ODEs, and is invoked for 1st order ODEs using the optional argument Lie
This function is part of the DEtools package, and so it can be used in the form parametricsol(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[parametricsol](..).
Examples
To see the solution to this equation without the parameter _T use the optional argument explicit
A 1st order ODE example where the solution can only be computed using symmetry methods
A 2nd order nonlinear ODE; Lie methods are automatically invoked when the differential order is higher than 1
See Also
DEtools, DEtools, reduce_order, dsolve, dsolve, Lie, odeadvisor[parametric]
Download Help Document