Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[matrixDE] - find solutions of a linear system of ODEs in matrix form
Calling Sequence
matrixDE(A, B, t, method=matrixexp)
matrixDE(A, B, t, solution=solntype)
Parameters
A, B
-
coefficients of a system ; if B not specified, then assumed to be a zero vector
t
independent variable of the system
method=matrixexp
(optional) matrix exponentials
solution=solntype
(optional) where solution=polynomial or solution=rational
Description
The matrixDE command solves a system of linear ODEs of the form . If B is not specified then it is assumed to be the zero vector.
An option of the form method = matrixexp can be specified to use matrix exponentials (in the case of constant coefficients).
An option of the form solution = polynomial or solution = rational can be specified to search for polynomial or rational solution. In this case, the function invokes LinearFunctionalSystems[PolynomialSolution] or LinearFunctionalSystems[RationalSolution].
The command returns a pair with , which is an by Matrix, and , which is an by Vector. A particular solution of the system can be then written in the form where is by and . If B is zero then P will also be zero.
If a system is expressed in terms of equations, dsolve can be used instead.
Examples
Nonconstant homogeneous system
Matrix of arbitrary coefficients
Verification of solution
Nonhomogeneous system of two variables with constant coefficients
Nonconstant homogeneous system with unknown coefficients
General nonhomogeneous system of two variables with constant coefficients
Finding a polynomial solution
See Also
DEtools, dsolve, LinearFunctionalSystems[PolynomialSolution], LinearFunctionalSystems[RationalSolution]
Download Help Document