Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[integrate_sols] - integrate the solutions of a differential operator or equation
Calling Sequence
integrate_sols(L, domain)
integrate_sols(eqn, dvar)
Parameters
L
-
differential operator
domain
list containing two names
eqn
homogeneous linear differential equation
dvar
dependent variable
Description
The input L is a differential operator. This procedure computes an operator M of minimal order such that any solution of L has an antiderivative which is a solution of M.
If the order of L equals the order of M then the output is a list [M, r] such that r(f) is an antiderivative of and also a solution of M for every solution of L. If the order of L is not equal to M then only M is given in the output. In this case M equals where is the derivation.
The argument domain describes the differential algebra. If this argument is the list , then the differential operators are notated with the symbols and . They are viewed as elements of the differential algebra where is the field of constants.
If the argument domain is omitted then the differential specified by the environment variable _Envdiffopdomain is used. If this environment variable is not set then the argument domain may not be omitted.
Instead of a differential operator, the input can also be a linear homogeneous differential equation having rational function coefficients. In this case the second argument must be the dependent variable.
This function is part of the DEtools package, and so it can be used in the form integrate_sols(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[integrate_sols](..).
Examples
The result was only the operator M. For an example where both M and r are obtained, consider:
Regarding the meaning of the second element in the output of integrate_sols, consider the following second order ODE and its solution.
The ODE satisfied by the integral of sol is given by the first element of the output of integrate_sols while the formula for computing its solution (as a function of sol) is given by the second element.
So the solution to ode2 is obtained by substituting sol into integral_of_sol.
That sol2 is the integral of sol can also be verified as follows: Differentiate sol2 and verify that it is equal to sol.
See Also
DESols, diffop
References
Abramov, S.A., and van Hoeij, M. "A method for the Integration of Solutions of Ore Equations." ISSAC '97 Proceedings, pp. 172-175. 1997.
van der Put, M., and Singer, M. F. Galois Theory of Linear Differential Equations, Vol. 328. Springer, 2003. An electronic version of this book is available at http://www4.ncsu.edu/~singer/ms_papers.html.
Download Help Document