Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[indicialeq] - compute the indicial polynomial of a homogeneous linear ODE
Calling Sequence
indicialeq(des, ivar, alpha, dvar)
Parameters
des
-
homogeneous linear ordinary differential equation or its list form
ivar
independent variable
alpha
point
dvar
(optional) dependent variable
Description
This routine is used to determine either the indicial equation at the point for a given homogeneous linear ordinary differential equation, or an equivalent list form (either as generated by DEtools[convertAlg] or as a coefficient list). If the ODE is regular singular (also called Fuchsian) at , then the degree of the indicial equation equals the order of the ODE; otherwise it is smaller than the order of the ODE. The roots of the indicial equation are called the exponents of the ODE at .
des may be in the standard differential equation form, or in one of two list forms: 1) a list as generated by DEtools[convertAlg], or 2) a coefficient list (as in the first element of a list generated by DEtools[convertAlg]).
dvar must be specified when des is input as a differential equation.
The definition of indicial equation is as follows. Let be a new variable, substitute into the equation, take the series expansion at , and take the coefficient of the first non-zero term. The result will be a polynomial in , which by definition is the indicial equation (indicialeq replaces by ivar so that no new variable is needed, and also divides by the leading coefficient). This definition is illustrated by an example below.
This function is part of the DEtools package, and so it can be used in the form indicialeq(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[indicialeq](..).
Examples
Coefficient list form:
Differential equation form:
This could also have been computed directly from the definition of the indicial equation, as follows:
ConvertAlg form:
See Also
DEtools, DEtools/gen_exp, DEtools[convertAlg]
References
[1] Ince, E.L. Ordinary Differential Equations, Chapters XVI and XVII. New York: Dover Publications, 1956.
Download Help Document