Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[equinv] - look for the most general ODE invariant under a given symmetry
Calling Sequence
equinv([xi, eta], y(x))
equinv([[xi1, eta1], [xi2, eta2],...], y(x))
equinv([xi, eta], y(x), n)
equinv([[xi1, eta1], [xi2, eta2],...], y(x), n)
Parameters
[xi, eta]
-
list of the coefficients of the symmetry generator (infinitesimals)
y(x)
indeterminate function to be used in the result
n
positive integer, indicating that an nth order ODE is to be returned
Description
equinv takes as first argument either a list of two algebraic expressions, to be seen as the infinitesimals of a one-parameter Lie group, or a list of such pairs representing many different symmetry groups. It returns, within the possibilities of the system, the most general ODE simultaneously invariant under those symmetry groups. The second argument is the indeterminate function of that ODE.
If the number n is given as extra argument, equinv looks for an invariant ODE of order n; otherwise, it will look for a first order ODE.
As a rule, if we represent the infinitesimal generator as
where x is the independent variable and y is the dependent one; equinv assumes that the order in which the infinitesimals xi and eta appear in the received list is .
In principle, there are no restrictions on the number of pairs of infinitesimals you can give at one time to equinv. However, the complexity of the problem increases with the number of pairs of infinitesimals given, and the problem may not have a solution. Also, when an nth order ODE is required (extra argument n) the given infinitesimals may contain _y1, _y2, ... which, as a convention, represent the derivative of the "indeterminate function" of the problem. In short, equinv also accepts dynamical symmetries as arguments.
equinv and buildsym may be useful in connection with the odeadvisor command and the option of dsolve, in order to study the relationship between symmetry patterns and ODE patterns (see ?dsolve,Lie).
This function is part of the DEtools package, and so it can be used in the form equinv(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[equinv](..).
Examples
Three pairs of infinitesimals not containing a 2-D subalgebra
The most general second order ODE simultaneously invariant under these three point symmetries
The fact that ODE2 is invariant under the three pairs of infinitesimals above can be tested using the symtest command (see ?symtest):
Two pairs of dynamical symmetries
The most general second order ODE simultaneously invariant under these two dynamical symmetries
See Also
buildsym, DEtools, dsolve,Lie, odeadvisor, PDEtools, symgen, symtest
Download Help Document