Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[adjoint] - return the adjoint of a differential operator
Calling Sequence
adjoint(L, domain)
adjoint(eqn, dvar)
Parameters
L
-
differential operator
domain
list containing two names
eqn
homogeneous linear differential equation
dvar
dependent variable
Description
If the input L is the differential operator , then the output is .
The adjoint has the following properties: adjoint(adjoint(L)) = L and mult(adjoint(L), adjoint(M)) = adjoint(mult(M,L)). So applying the adjoint results in switching the order of multiplication; the adjoint is an anti-automorphism of C(x)[Dx], multiplied by .
The argument domain describes the differential algebra. If this argument is the list , then the differential operators are notated with the symbols and . They are viewed as elements of the differential algebra C(x)[Dx] where is the field of constants.
If the argument domain is omitted, then the differential specified by the environment variable _Envdiffopdomain is used. If this environment variable is not set then the argument domain may not be omitted.
Instead of a differential operator, the input can also be a linear homogeneous differential equation eqn. In this case the second argument dvar must be the dependent variable.
This function is part of the DEtools package, and so it can be used in the form adjoint(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[adjoint](..).
Examples
See Also
DEtools[mult], diffop
Download Help Document