Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[Homomorphisms] - compute the homomorphisms between two solution spaces
Calling Sequence
Homomorphisms(L1, L2, domain)
Parameters
L1
-
differential operator
L2
domain
list containing two names
Description
The input L1, L2 are differential operators. Denote V(L1) and V(L2) as the solution spaces of these two operators. If a map from V(L1) to V(L2) can be given in the form of a differential operator, then we call that map a homomorphism from V(L1) to V(L2). The command Homomorphisms computes a basis (as vector space) of all such homomorphisms, that is, it computes a basis of all operators r for which r(V(L1)) is a subset of V(L2).
In the special case L1=L2 the same can also be calculated with the command DEtools[eigenring].
Invertible homomorphisms (isomorphisms) from V(L1) to V(L2) are also called gauge transformations. If L1 and L2 belong to the same family of differential operators and differ only in their parameter values, then the name ladder operators is used as well.
The argument domain describes the differential algebra. If this argument is the list then the differential operators are notated with the symbols and . They are viewed as elements of the differential algebra where is the field of constants, and refers to the differentiation operator .
If the argument domain is omitted then the differential specified by the environment variable _Envdiffopdomain will be used. If this environment variable is not set, then the argument domain may not be omitted.
This function is part of the DEtools package, and so it can be used in the form Homomorphisms(..) only after executing the command with(DEtools). However, it can always be accessed through the long form of the command by using DEtools[Homomorphisms](..).
Examples
Take the differential ring :
Compute a basis for the homomorphisms.
Since this basis has precisely one element, there is, up to multiplication by constants, precisely one map that can be presented by an operator .
In the following example, every linear map can be presented by an operator. Thus, the dimension of all such maps will be . Since the output is a basis of these maps, it must have 6 elements.
See Also
DEtools[eigenring], diffop
References
van der Put, M., and Singer, M. F. Galois Theory of Linear Differential Equations, Vol. 328. Springer: 2003. An electronic version of this book is available at http://www4.ncsu.edu/~singer/ms_papers.html.
van Hoeij, M. "Rational Solutions of the Mixed Differential Equation and its Application to Factorization of Differential Operators." ISSAC '96 Proceedings. (1996): 219-225.
Download Help Document