Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[regular_parts] - Find regular parts of a linear ode
Calling Sequence
regular_parts(L, y, t, [x=x0])
Parameters
L
-
linear homogeneous differential equation
y
unknown function to search for
t
name used as parametrization variable
x0
(optional) a rational, an algebraic number or infinity
Description
The regular_parts function computes the minimal generalized exponents of L at the point x0 and the corresponding regular parts. These are operators L_e which result from L by replacing y(x) by exp(int(e, x))*y(x). The Newton polygon of L_e at x_0 has a segment of slope 0 and 0 is a root of the indicial polynomial.
The equation must be homogeneous and linear in y and its derivatives, and its coefficients must be rational functions in the variable x.
x0 must be a rational or an algebraic number or the symbol infinity. If x0 is not passed as argument, x0 = 0 is assumed.
The output is a set of solutions which are of the form exp(int(e, x))*y where e is a minimal generalized exponent and y is given as DESol object.
The command with(DEtools,regular_parts) allows the use of the abbreviated form of this command.
Examples
Then 0 is a singular point of this equation. Newton polygon is:
There are slopes > 0 so 0 is an irregular singular point.
yields two transformed differential equations:
These operators have a Newton polygon with slope 0:
This can help to find closed-form solutions:
Since the general solution of the regular part is a+b*x+c*x^2 for some constants a,b and c, we obtain the general solution of the original equation by taking into account the exponential transformation:
See Also
DEtools, DEtools/formal_sol
Download Help Document