Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[eigenring] - compute the endomorphisms of the solution space
DEtools[endomorphism_charpoly] - give the characteristic polynomial of an endomorphism
Calling Sequence
eigenring(L, domain)
endomorphism_charpoly(L, r, domain)
Parameters
L
-
differential operator
r
differential operator in the output of eigenring
domain
list containing two names
Description
The input L is a differential operator. Denote V(L) as the solution space of L. eigenring computes a basis (a vector space) of the set of all operators r for which r(V(L)) is a subset of V(L). So r is an endomorphism of the solution space V(L). The characteristic polynomial of this map can be computed by the command endomorphism_charpoly(L,r).
For endomorphisms r, the product of L and r is divisible on the right by L. If the optional third argument is the equation verify=true then eigenring checks if the output satisfies this condition. This should not be necessary though.
The argument domain describes the differential algebra. If this argument is the list then the differential operators are notated with the symbols and . They are viewed as elements of the differential algebra C(t)[Dt] where is the field of constants.
If the argument domain is omitted then the differential specified by the environment variable _Envdiffopdomain will be used. If this environment variable is not set, then the argument domain may not be omitted.
These functions are part of the DEtools package, and so they can be used in the form eigenring(..) and endomorphism_charpoly(..) only after executing the command with(DEtools). However, they can always be accessed through the long form of the command by using DEtools[eigenring](..) or DEtools[endomorphism_charpoly](..).
Examples
Take the differential ring C(x)[Dx]:
Compute a basis v for the endomorphisms. Compute an eigenvalue of . Then compute the greatest common right divisor . Then the solution space is the kernel of.
See Also
DEtools[DFactor], DEtools[GCRD], DEtools[Homomorphisms], diffop
References
For a description of the method used, see:
van der Put, M., and Singer, M. F. Galois Theory of Linear Differential Equations, Vol. 328. Springer: 2003. An electronic version of this book is available at http://www4.ncsu.edu/~singer/ms_papers.html.
van Hoeij, M. "Rational Solutions of the Mixed Differential Equation and its Application to Factorization of Differential Operators." ISSAC '96 Proceedings. (1996): 219-225.
Download Help Document