Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
DEtools[MultiplicativeDecomposition] - construct two multiplicative decompositions of a hyperexponential function
Calling Sequence
MultiplicativeDecomposition[1](H, x)
MultiplicativeDecomposition[2](H, x)
Parameters
H
-
hyperexponential function of x
x
variable
Description
Let H be a hyperexponential function of x over a field K of characteristic 0. The MultiplicativeDecomposition[i](H,x) calling sequence constructs the ith multiplicative decomposition for H, .
If the MultiplicativeDecomposition command is called without an index, the first multiplicative decomposition is constructed.
A multiplicative decomposition of H is a pair of rational functions such that . Let R be the rational certificate of H, i.e., . Let be a differential rational normal form of R. Then is a multiplicative decomposition of H. Hence, each differential rational normal form of the certificate R of H is also a multiplicative decomposition of H.
The construction of MultiplicativeDecomposition[i](H,x) is based on , for .
The output is of the form where V and F are rational function of x over K.
Examples
See Also
DEtools[AreSimilar], DEtools[RationalCanonicalForm], DEtools[ReduceHyperexp], SumTools[Hypergeometric][MultiplicativeDecomposition]
References
Geddes, Keith; Le, Ha; and Li, Ziming. "Differential rational canonical forms and a reduction algorithm for hyperexponential functions." Proceedings of ISSAC 2004. ACM Press, (2004): 183-190.
Download Help Document