Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[invert] - form the inverse of any second rank tensor_type
Calling Sequence
invert(T, detT)
Parameters
T
-
second rank tensor the determinant of which is nonzero
detT
unassigned name as an output parameter (for holding the determinant of T, which is a by-product of this routine)
Description
This procedure computes the determinant of the second rank tensor T, and whenever the T determinant does not vanish, it constructs the inverse tensor of T.
In the case of a purely covariant or contravariant tensor T, the inverse T~ of T is defined in the usual way, corresponding to matrix algebra
where delta is the Kronecker delta.
In the case of a mixed tensor T, the inverse T~ of T is defined so that it satisfies
Thus, for the mixed case, T~ is the transpose of the matrix inverse of T. Define the inverse for the mixed case this way so that tensor[invert] can be used to compute inverses of the components of tetrads and frames. In the case of the natural basis, tensor[invert] is well suited for determining the contravariant metric tensor components from the covariant ones (and vice versa).
Indexing function: The invert routine preserves the use of the symmetric indexing function. That is, if the input tensor_type uses the symmetric indexing function for its component arrays, then the result also uses the symmetric indexing function.
Simplification: This routine uses the `tensor/invert/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/invert/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/invert/simp` routine be customized to suit the needs of the particular problem.
This function is part of the tensor package, and so can be used in the form invert(..) only after performing the command with(tensor) or with(tensor, invert). The function can always be accessed in the long form tensor[invert](..).
Examples
Compute the inverse of the mixed tensor_type T. Note that the result is the transpose of the matrix inverse:
Define the covariant Kerr-Newman metric tensor:
See Also
tensor, tensor[simp]
Download Help Document