Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[dual] - perform the dual operation on the indices of a tensor
Calling Sequence
dual(LC, T, index_list)
Parameters
LC
-
Levi-Civita pseudo-tensor
T
tensor to dual
index_list
list of indices of T to dual
Description
The function dual(LC, T, [i1, i2, ... ]) computes the dual of the tensor T on indices i1, i2, ... of T using the components of the Levi-Civita pseudo-tensor LC. This is done by forming the inner product of LC with T, contracting over the appropriate indices of T and dividing by the appropriate normalizing factor.
The index_list must contain indices of T which are all of the same covariant / contravariant character and in which T is skew-symmetric. The number of indices to dual cannot exceed the dimension of the space (which equals the rank of LC) and must be greater than zero. At this time, the routine does not check if T is really antisymmetric in the given indices -- it is a precondition.
All of the indices of the LC tensor must have character opposite to that of the indices of T of which the dual is to be taken. No mixed-type LC tensors are permitted. Thus, the dual of indices of T of opposite character must be computed separately by calling the function twice. The LC tensor can be obtained by using tensor[Levi_Civita].
The result is a tensor type of rank equal to:
The normalizing factor is equal to factorial(size(index_list)).
If the number of indices being dualed equals the rank of the input tensor, then the components of the result will be completely skew-symmetric (since their indices are the free indices of the Levi-Civita tensor). In this case, the result uses the antisymmetric indexing function for its component array.
Simplification: This routine uses the `tensor/prod/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/prod/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/prod/simp` routine be customized to suit the needs of the particular problem.
Examples
Define the coordinates and metric of Minkowski space-time:
Use the Levi_Civita routine to generate the Levi-Civita pseudo-tensor:
Define the contravariant components of the Electromagnetic Field tensor:
Compute the dual of F:
Compute the dual of the dual of F:
See Also
tensor, tensor/Levi_Civita, tensor[prod], tensor[simp]
Download Help Document