Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[Riemann] - compute the covariant Riemann curvature tensor
Calling Sequence
Riemann(ginv, D2g, Cf1)
Parameters
ginv
-
rank two tensor_type of character [-1,-1] representing the contravariant metric tensor; specifically,
D2g
rank four tensor_type of character [-1,-1,-1,-1] representing the second partial derivatives of the COVARIANT metric tensor; specifically,
Cf1
rank three tensor_type of character [-1,-1,-1] representing the Christoffel symbols of the first kind; specifically,
Description
The routine Riemann(ginv, D2g, Cf1) computes the components of the covariant Riemann tensor using the contravariant metric tensor ginv, the second partial derivatives of the metric D2g, and the Christoffel symbols of the 1st kind Cf1. The result is a tensor_type with character [-1, -1, -1, -1] which uses the tensor package's 'cov_riemann' indexing function.
ginv should be indexed using the symmetric indexing function. D2g should be indexed using the `d2met` indexing function. Cf1 should be indexed using the `cf1` indexing function. All of the parameters can be obtained using the appropriate tensor package routines once the metric is known.
Indexing Function: The result uses the `cov_riemann` indexing function to implement the symmetrical properties of the indices of the covariant riemann tensor. Specifically, the indexing function implements the following:
skew-symmetry in the first and second indices
skew-symmetry in the third and fourth indices
symmetry in the first and second pairs of indices
Simplification: This routine uses the `tensor/Riemann/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/Riemann/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/Riemann/simp` routine be customized to suit the needs of the particular problem.
This function is part of the tensor package, and so can be used in the form Riemann(..) only after performing the command with(tensor) or with(tensor, Riemann). The function can always be accessed in the long form tensor[Riemann](..).
Examples
Define the coordinate variables and the covariant components of the Schwarzchild metric.
Compute the Riemann tensor.
Show the nonzero components.
map(proc(x) if RMNc[op(x)]<>0 then x=RMNc[op(x)] else NULL end if end proc, [ indices(RMNc)] );
You can also view the result using the tensor package function displayGR.
See Also
Physics[Christoffel], Physics[D_], Physics[d_], Physics[Einstein], Physics[g_], Physics[LeviCivita], Physics[Ricci], Physics[Riemann], Physics[Weyl], tensor, tensor/partial_diff, tensor[Christoffel1], tensor[displayGR], tensor[indexing], tensor[invert], tensor[simp], tensor[tensorsGR]
Download Help Document