Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
tensor[Einstein] - compute the covariant components of the Einstein tensor
Calling Sequence
Einstein(g, Ricci, R)
Parameters
g
-
rank two tensor_type of character representing the covariant metric tensor; specifically,
Ricci
rank two tensor_type of character representing the covariant Ricci tensor; specifically,
R
rank zero tensor_type of character [], representing the Ricci scalar (note it is recognized as a 0th rank tensor_type in the tensor package).
Description
The resultant tensor_type, Estn say, of this routine is the COVARIANT Einstein tensor, indexed as shown below:
The component arrays of both g and Ricci should use the Maple symmetric indexing function. They can be computed using the appropriate routines from the package. The component array of the result uses Maple's symmetric indexing function.
Simplification: This routine uses the `tensor/Einstein/simp` routine for simplification purposes. The simplification routine is applied to each component of result after it is computed. By default, `tensor/Einstein/simp` is initialized to the `tensor/simp` routine. It is recommended that the `tensor/Einstein/simp` routine be customized to suit the needs of the particular problem.
This function is part of the tensor package, and so can be used in the form Einstein(..) only after performing the command with(tensor) or with(tensor, Einstein). The function can always be accessed in the long form tensor[Einstein](..).
Examples
Define the coordinate variables and the covariant Schwarzchild metric tensor components.
Now compute all of the quantities necessary to compute the Einstein tensor:
Compute the Einstein tensor:
You can also view the result using the function tensor[displayGR].
See Also
Physics[Christoffel], Physics[D_], Physics[d_], Physics[Einstein], Physics[g_], Physics[LeviCivita], Physics[Ricci], Physics[Riemann], Physics[Weyl], tensor, tensor[displayGR], tensor[Ricci], tensor[Ricciscalar], tensor[Riemann], tensor[simp], tensor[tensorsGR]
Download Help Document