Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Solving Linear Second Order ODEs for which a Symmetry of the Form [xi=0, eta=F(x)] Can Be Found
Description
All second order linear ODEs have symmetries of the form [xi=0, eta=F(x)]. Actually, F(x) is always a solution of the related homogeneous ODE. There is no general scheme for determining F(x); see dsolve,linear).
When a symmetry of the form [xi=0, eta=F(x)] is found, this information is enough to integrate the homogeneous ODE (see Murphy's book, p. 88).
In the case of nonhomogeneous ODEs, you can do the following:
1) look for F(x) as a symmetry of the homogeneous ODE;
2) solve the homogeneous ODE using this information;
3) set each of _C1 and _C2 equal to 0 and 1 in the answer of the previous step, in order to obtain the two linearly independent solutions of the homogeneous ODE;
4) use these two independent solutions of the homogeneous ODE to build the general solution to the nonhomogeneous ODE (see Bluman and Kumei, Symmetries and Differential Equations, p. 132 and ?dsolve,references).
Examples
A nonhomogeneous ODE example
A nonhomogeneous example step by step
Steps 1) and 2) mentioned above
Step 3): two independent solutions for the homogeneous_ode
Step 4): a procedure for the general solution to the original nonhomogeneous ODE (ode[3]) is given by
where s1 and s2 are the linearly independent solutions of the homogeneous ode (sol_1 and sol_2 above), F is the nonhomogeneous term (here represented by F(x)), and W is the Wronskian, in turn given by
from which the answer to the nonhomogeneous ODE follows
See Also
DEtools, odeadvisor, dsolve,Lie, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear, sym_Fx, linear_sym, Bessel, Painleve, Halm, Gegenbauer, Duffing, ellipsoidal, elliptic, erf, Emden, Jacobi, Hermite, Lagerstrom, Laguerre, Liouville, Lienard, Van_der_Pol, Titchmarsh; for other differential orders see odeadvisor,types.
Download Help Document