Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Solving Second and Third Order ODEs using an Integrating Factor
Description
If, for an nth order ODE (n=2 or n=3) with the nth derivative isolated, there exists an integrating factor which depends only on the (n-1)st derivative, this integrating factor can be determined. The differential order of the ODE can then be reduced by one.
The general form of such an ODE of second order is:
reducible_ode_2 := diff(y(x),x,x)=diff(G(x,y(x)),x)/D(F)(diff(y(x),x));
where F and G are arbitrary functions of their arguments. The integrating factor in this case is
mu := D(F)(diff(y(x),x));
The reduced ODE then becomes
F(diff(y(x),x)) = G(x,y(x)) + _C1;
The general form of this ODE of third order is:
reducible_ode_3 := diff(y(x),x$3)=diff(G(x,y(x),diff(y(x),x)),x)/D(F)(diff(y(x),x,x));
mu := D(F)(diff(y(x),x,x));
The reduced ODE is
F(diff(y(x),x,x)) = G(x,y(x),diff(y(x),x)) + _C1;
Examples
Explicit or implicit results can be tested, in principle, using odetest. When testing multiple solutions, you can use map, as follows:
A third order ODE
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear; for other differential orders see odeadvisor,types.
Download Help Document