Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Solving ODEs That Are in Quadrature Format
Description
An ODE is said to be in quadrature format when the following conditions are met:
1) the ODE is of first order and the right hand sides below depend only on x or y(x):
quadrature_1_x_ode := diff(y(x),x)=F(x);
quadrature_1_y_ode := diff(y(x),x)=F(y(x));
2) the ODE is of high order and the right hand side depends only on x. For example:
quadrature_h_x_ode := diff(y(x),x,x,x,x)=F(x);
where F is an arbitrary function. These ODEs are just integrals in disguised format, and are solved mainly by integrating both sides.
Examples
From the point of view of their symmetries, all ODEs "missing y" have the symmetry [xi = 0, eta = 1], and all ODEs "missing x" have the symmetry [xi = 1, eta = 0] (see symgen);
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, linear, separable, Bernoulli, exact, homogeneous, homogeneousB, homogeneousC, homogeneousD, homogeneousG, Chini, Riccati, Abel, Abel2A, Abel2C, rational, Clairaut, dAlembert, sym_implicit, patterns; for other differential orders see odeadvisor,types.
Download Help Document