Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Exact Nonlinear ODEs
Description
The general form of the exact nonlinear ODE is given by the following:
exact_nonlinear_ode := 'diff(F(x,y(x),seq(diff(y(x),x$i),i=1..n)),x)' = 0;
See Murphy, "Ordinary Differential Equations and their Solutions", p. 221.
The order of this ODE can be reduced since it is the total derivative of an ODE of one order lower. If the given ODE is G(x,y,y1,y2,...,yn)=0, the test for exactness is the following:
where
Note: The derivatives with respect to y, dy/dx and d^2y/dx^2 are taken in the obvious manner but the derivatives with regard to x are taken considering y, and its derivatives as functions of x.
The reduced ODE is:
reduced_ode := 'F(x,y(x),seq(diff(y(x),x$i),i=1..n))' = _C1;
Examples
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, missing, reducible, linear_ODEs, exact_linear, exact_nonlinear; for other differential orders see odeadvisor,types.
Download Help Document