Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Solving ODEs of the Form Chini
Description
The general form of Chini's equation is given by:
Chini_ode := diff(y(x),x)=f(x)*y(x)^n-g(x)*y(x)+h(x);
where f(x), g(x) and h(x) are arbitrary functions. See Differentialgleichungen, by E. Kamke, ODE 1.55, p. 303.
There is as yet no general solution for this ODE. For n=2, Chini's ODE is of Riccati type; for n=3 it is of Abel type. If the following combination of coefficients
Chini_invariant := f(x)^(-n-1)*h(x)^(-2*n+1)*(f(x)* diff(h(x),x)-diff(f(x),x)*h(x)-g(x)*f(x)*n*h(x))^n*n^(-n);
is independent of 'x', then the solution to the ODE follows in a straightforward manner; see Kamke, page 303. This scheme, proposed by Chini, generalizes the method of invariants for Abel ODEs (also proposed by Chini) found in Kamke's book as sub-method (g) for Abel ODEs; see odeadvisor,Abel.
Actually, when the square term in the Abel ODE is zero, the Abel invariant described in odeadvisor,Abel is equal to the Chini invariant described below. Now all Abel ODEs can be rewritten in Chini format (that is, square term = 0; see example below), and if the Abel invariant of an Abel ODE is constant, then the Abel invariant for this ODE written in Chini format is also constant. To understand this, note that the "independence of the invariant with respect to 'x'" for Abel ODEs is preserved under transformations of the form
y -> G(t)*u(t)+H(t);
x -> F(t);
for any G, H, and F. The transformation that removes the square term in Abel ODEs (that is, rewrites it in Chini format) is given by
y -> u(x)-f2/(f3*3);
and is just a particular case of the general transformation displayed above (see also odeadvisor,Abel.
Examples
All Abel ODEs, such as the following:
can be written in 'Chini' form by eliminating the square term through the following transformation:
Kamke, 1.52:
Kamke, 1.54:
See Also
DEtools, odeadvisor, dsolve, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, linear, separable, Bernoulli, exact, homogeneous, homogeneousB, homogeneousC, homogeneousD, homogeneousG, Chini, Riccati, Abel, Abel2A, Abel2C, rational, Clairaut, dAlembert, sym_implicit, patterns; for other differential orders see odeadvisor,types.
Download Help Document