Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Solving Abel's ODEs of the Second Kind, Class A
Description
The general form of Abel's equation, second kind, class A is given by:
Abel_ode2A := (y(x)+g(x))*diff(y(x),x)=f2(x)*y(x)^2+f1(x)*y(x)+f0(x);
where f2(x), f1(x), f0(x), and g(x) are arbitrary functions. See Differentialgleichungen, by E. Kamke, p. 26. There is as yet no general solution for this ODE.
Note that all ODEs of type Abel, second kind, can be rewritten as ODEs of type Abel, first kind, as explained in ?odeadvisor,Abel2C
Examples
1) f0(x) = f1(x)*g(x)-f2(x)*g(x)^2
This case can be solved as follows:
2) Another case which can be solved:
f1(x) = 2*f2(x)*g(x)-diff(g(x),x)
Although the answer for this case can be obtained using standard methods (an integrating factor is easily found), the use of symmetry methods can provide an explicit solution. The infinitesimals for this case are given by
To indicate the use of symmetry methods "at first", we can explicitly indicate an integration method (see dsolve); for instance, to use the canonical coordinates of the invariance group:
See Also
DEtools, dsolve, odeadvisor, and ?odeadvisor,<TYPE> where <TYPE> is one of: quadrature, linear, separable, Bernoulli, exact, homogeneous, homogeneousB, homogeneousC, homogeneousD, homogeneousG, Chini, Riccati, Abel, Abel2C, rational, Clairaut, dAlembert, sym_implicit, patterns; for other differential orders see odeadvisor,TYPES.
Download Help Document