Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
arcsin, arccos, ... - The Inverse Trigonometric functions
arcsinh, arccosh, ... - The Inverse Hyperbolic functions
Calling Sequence
arcsin(x) arccos(x) arctan(x)
arcsec(x) arccsc(x) arccot(x)
arcsinh(x) arccosh(x) arctanh(x)
arcsech(x) arccsch(x) arccoth(x)
arctan(y, x)
Parameters
x
-
expression
y
Description
The arctrigonometric functions
arcsin
arccos
arctan
arcsec
arccsc
arccot
and archyperbolic functions
arcsinh
arccosh
arctanh
arcsech
arccsch
arccoth
compute inverses of the corresponding trigonometric and hyperbolic functions.
The arctrigonometric and archyperbolic function are calculated in radians (1 radian = 180/ degrees).
For information about expanding and simplifying trigonometric expressions, see expand, factor, combine/trig, and simplify/trig.
As the trigonometric and hyperbolic functions are not invertible over the entire complex plane, or for many of them even over the real line, it is necessary to define a principal branch for each such inverse function. This is done by restricting the forward function to a principal domain on which it is invertible, and taking that domain as the range of the inverse function.
This process necessarily results in discontinuities in the inverse functions, which can be taken to be along line segments (called branch cuts) in the real or imaginary axes. There is choice involved with this process, and the choices can have far reaching mathematical consequences. See invtrig/details for more information about Maple's choices for the branch cuts of these functions.
For real arguments x, y, the two-argument function arctan(y, x), computes the principal value of the argument of the complex number , so . This function is extended to complex arguments by the formula
Operator notation can also be used for the inverse trigonometric and hyperbolic functions. For example, sin@@(-1) (which is equivalent to in 2-D math) evaluates to .
Examples
See Also
@@, argument, convert, initialfunctions, invtrig/details, polar, RealDomain, trig, type/arctrig
Download Help Document