Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geometry[conic] - define a conic
Calling Sequence
conic(p, [A, B, C, E, F], n)
conic(p, [dir, fou, ecc], n)
conic(p, eqn, n)
Parameters
p
-
the name of the conic
A, B, C, E, F
five distinct points
dir
the line which is the directrix of the conic
fou
point which is the focus of the conic
ecc
a positive number denoting the eccentricity of the conic
eqn
the algebraic representation of the conic (i.e., a polynomial or an equation)
n
(optional) list of two names representing the names of the horizontal-axis and vertical-axis
Description
A conic p can be defined as follows:
from five distinct points. The input is a list of five points. Note that a set of five distinct points does not necessarily define a conic.
from the directrix, focus, and eccentricity. The input is a list of the form [dir, fou, ecc] where dir, fou, and ecc are explained above.
from its internal representation eqn. The input is an equation or a polynomial. If the optional argument n is not given, then:
if the two environment variables _EnvHorizontalName and _EnvVerticalName are assigned two names, these two names will be used as the names of the horizontal-axis and vertical-axis respectively.
if not, Maple will prompt for input of the names of the axes.
The routine returns a conic which includes the degenerate cases for the given input. The output is one of the following object: (or list of objects)
a parabola
an ellipse
a hyperbola
a circle
a point (ellipse: degenerate case)
two parallel lines or a "double" line (parabola: degenerate case)
a list of two intersecting lines (hyperbola: degenerate case)
The information relating to the output conic p depends on the type of output. Use the routine geometry[form] to check for the type of output. For a detailed description of the conic p, use the routine detail (i.e., detail(p))
The command with(geometry,conic) allows the use of the abbreviated form of this command.
Examples
define conic c1 from its algebraic representation:
ellipse: "the given equation is indeed a circle"
conic: "degenerate case: single point"
degenerate case of an ellipse
conic: "degenerate case: a double line"
degenerate case of a parabola
conic: "degenerate case: two ParallelLine lines"
conic: "degenerate case: two intersecting lines"
the degenerate case of a hyperbola
See Also
geometry[draw], geometry[HorizontalName], geometry[objects], geometry[VerticalName]
Download Help Document