Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geometry[RegularStarPolygon] - define a regular star polygon
Calling Sequence
RegularStarPolygon(p, n, cen, rad )
Parameters
p
-
the name of the regular star polygon
n
positive rational number > 2
cen
point which is the center of the n-gon
rad
number which is the radius of the circumscribed circle of the n-gon
Description
Let S be a rotation through angle , and let A_0 be any point not on the axis of S. Then the points are the vertices of a regular polygon n whose sides are the segments A_0A_1, A_1A_2, ...
When n is an integer (greater than 2) this definition is equivalent to that given for regular polyhedra. But the polygon can be closed without n being integral; it is merely necessary that the period of S to be finite, i.e., that n be rational. We still stipulate that since a positive rotation through an angle greater than Pi is the same as a negative rotation through an angle less than Pi.
To access the information relating to a regular star polygon p, use the following function calls:
form(p)
returns the form of the geometric object
(i.e., RegularStarPolygon2d if p is a regular polygon).
DefinedAs(p)
returns a list of vertices of p.
sides(p)
returns the side of p.
center(p)
returns the center of p.
radius(p)
returns the radius of the circum-circle of p.
InteriorAngle(p)
returns the interior angle of p.
ExteriorAngle(p)
returns the exterior angle of p.
perimeter(p)
returns the perimeter of p.
area(p)
returns the area of p.
detail(p)
returns a detailed description of the
given regular polygon p.
The command with(geometry,RegularStarPolygon) allows the use of the abbreviated form of this command.
Examples
See Also
geometry[RegularPolygon]
Download Help Document