Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
geom3d[FindAngle] - find the angle between two given objects
Calling Sequence
FindAngle(l1, l2)
FindAngle(p1, p2)
FindAngle(s1, s2)
FindAngle(l1, p1)
FindAngle(A, T)
Parameters
l1, l2
-
lines
p1, p2
planes
s1, s2
sphere
A
a point
T
a triangle
Description
When two lines l1, l2 do not intersect, we define the angle determined by them as the angle between two lines through the origin parallel to the given lines. It is the convention that the angle returned is in the interval [0,Pi/2].
The angle between two planes p1, p2 is equal to the angle between their normals.
The angle of intersection of two spheres s1 and s2 at a common point is the angle between the tangent-planes to the spheres at that points. Note that at all common points, the angle of intersection is the same.
The angle between a straight line l1 and a plane p1 is equal to the complement of the angle between the straight line and the normal of the plane.
If T is a triangle, and A a vertex of T, FindAngle(A,T) returns the internal angle of T at A.
The command with(geom3d,FindAngle) allows the use of the abbreviated form of this command.
Examples
Find the angle between a line and a plane
make necessary assumptions
If the point P(a,b,c) perpendiculars PM, PN are drawn to the planes of zx, xy, find the equation of the plane OMN and the angle which OP makes with it.
See Also
geom3d[distance], geom3d[line], geom3d[plane], geom3d[sphere]
Download Help Document