Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
evalm - evaluate a matrix expression
Calling Sequence
evalm(matrix expression)
Parameters
matrix expression
-
expression
Description
Important: The evalm command has been deprecated. Matrix algebra expressions involving Matrices such as are evaluated directly, eliminating the need for the additional step of applying evalm. For additional information, see Linear Algebra Computations in Maple.
The function evalm evaluates an expression involving matrices. It performs any sums, products, or integer powers involving matrices, and will map functions onto matrices.
Note that Maple may perform simplifications before passing the arguments to evalm, and these simplifications may not be valid for matrices. For example, evalm(A^0) will return 1, not the identity matrix.
Unassigned names will be considered either symbolic matrices or scalars depending on their use in an expression.
To indicate non-commutative matrix multiplication, use the operator &*. The matrix product ABC may be entered as or as , the latter being more efficient. Automatic simplifications such as collecting constants and powers will be applied. Do NOT use the * to indicate purely matrix multiplication, as this will result in an error. The operands of &* must be matrices (or names) with the exception of 0. Unevaluated matrix products are considered to be matrices. The operator &* has the same precedence as the * operator.
Use 0 to denote the matrix or scalar zero. Use to denote the matrix identity. It may be convenient to use alias(Id=&*()).
If a sum involves a matrix and a Maple constant, the constant will be considered as a constant multiple of the identity matrix. Hence matrix polynomials can be entered in exactly the same fashion as fully expanded scalar polynomials.
Examples
See Also
alias, array(deprecated), linalg(deprecated), Matrix, matrix(deprecated), operator
Download Help Document