Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Student[NumericalAnalysis][Euler] - numerically approximate the solution to a first order initial-value problem using Euler's method
Calling Sequence
Euler(ODE, IC, t=b, opts)
Euler(ODE, IC, b, opts)
Parameters
ODE
-
equation; first order ordinary differential equation of the form
IC
equation; initial condition of the form y(a)=c, where a is the left endpoint of the initial-value problem
t
name; the independent variable
b
algebraic; the point for which to solve; the right endpoint of this initial-value problem
opts
(optional) equations of the form keyword=value, where keyword is one of numsteps, output, comparewith, digits, or plotoptions; options for numerically solving the initial-value problem
Description
Given an initial-value problem consisting of an ordinary differential equation ODE, a range a <= t <= b, and an initial condition y(a) = c, the Euler command computes an approximate value of y(b) using the classical forward Euler method.
If the second calling sequence is used, the independent variable t will be inferred from ODE.
The endpoints a and b must be expressions that can be evaluated to floating-point numbers. The initial condition IC must be of the form y(a)=c, where c can be evaluated to a floating-point number.
The Euler command is a shortcut for calling the InitialValueProblem command with the method = euler option.
Options
comparewith = [list]
A list of method-submethod pairs; the method specified in the method option will be compared graphically with these methods. This option may only be used if output is set to either plot or information.
It must be of the form
comparewith = [[method_1, submethod_1], [method_2, submethod_2]]
If either method lacks applicable submethods, the corresponding submethod_n entry should be omitted.
Lists of all supported methods and their submethods are found in the InitialValueProblem help page, under the descriptions for the method and submethod options, respectively.
digits = posint
The number of digits to which the returned values will be rounded (using evalf). The default value is 4.
numsteps = posint
The number of steps used for the chosen numerical method. This option determines the static step size for each iteration in the algorithm. The default value is 5.
Controls what information is returned by this procedure. The default value is solution:
output = solution returns the computed value of at = b;
output = Error returns the absolute error of at = b;
output = plot returns a plot of the approximate (Euler) solution and the solution from one of Maple's best numeric DE solvers; and
output = information returns an array of the values of , Maple's numeric solution, the approximations of as computed using this method and the absolute error between these at each iteration.
plotoptions = list
The plot options. This option is used only when output = plot is specified.
Notes
To approximate the solution to an initial-value problem using a method other than Euler's Method, see InitialValueProblem.
Examples
See Also
Student[NumericalAnalysis], Student[NumericalAnalysis][InitialValueProblem], Student[NumericalAnalysis][VisualizationOverview]
Download Help Document