Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Solving Linear ODEs
Description
The general form of the linear ODE is given by:
where the coefficients can be functions of , see Differentialgleichungen, by E. Kamke, p. 69. Roughly speaking, there is no general method for solving the most general linear ODE of differential order greater than one. However, this is an active research area and there are many solving schemes which are applicable when the linear ODE satisfies certain conditions. In all the cases, if the method is applicable and the ODE is of second order, the ODE can be integrated to the end; otherwise, its order can be reduced by one or more, depending on the case. A summary of the methods implemented in dsolve for linear ODEs is as follows:
the ODE is exact (see odeadvisor, exact_linear);
the coefficients are rational functions and the ODE has exponential solutions (see DEtools, expsols);
the ODE has liouvillian solutions (see DEtools, kovacicsols);
the ODE has three regular singular points (see DEtools, RiemannPsols).
the ODE has simple symmetries of the form (see odeadvisor, sym_Fx);
the ODE has special functions" solutions (see odeadvisor, classifications for second order ODEs).
Examples
The most general exact linear non-homogeneous ODE of second order; this case is solvable (see odeadvisor, exact_linear):
Exponential solutions for a third order linear ODE .
An example of an ODE with regular singular points
An example for which symmetries of the form can be found (see odeadvisor, sym_Fx)
Some ODEs with special function solutions (see odeadvisor, second order ODEs).
Bessel ODE.
Complete Elliptic Integral ODE.
Gegenbauer ODE.
See Also
DESol, dsolve, odeadvisor, odeadvisor,TYPES
Download Help Document