Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Solutions for Linear Ordinary Differential Equations (LODEs) via Differential Factorization
Description
One of the significant improvements for solving linear ODEs is the method which makes use of the factorization of differential operators (see diffop, and examples,diffop). As an example, the third order linear ODE
ode := x^2*diff(y(x),x$3) + (-x^3+3*x)*diff(y(x),x$2) + (-x^3+3*x)*y(x);
is solved as
dsolve(ode);
The method of solution takes advantage of the (sometimes) possible factorization of the linear differential operator associated to the given LODE. For example, for ode above, the differential operator is given by
DEtools[de2diffop](ode, y(x), [Dx,x]);
and this operator is factored as
DEtools[DFactor]((3), [Dx,x]);
The original ode is then solved by solving the LODEs determined by these two factors above (the solution to the left factor enters as a non-homogeneous term in the LODE associated to the right factor; solving this non-homogeneous LODE leads to the solution of ode).
As the second example, consider
ode := diff(y(x),x$3) - x*diff(y(x),x$2) - b^2*diff(y(x),x) + b^2*x*y(x);
This LODE is solved by dsolve as follows
In this case the solving method is taking advantage of the partial factorization
Dx^3-x*Dx^2-b^2*Dx+b^2*x = (Dx-x)*(Dx^2-b^2);
rather than the complete factorization
Dx^3-x*Dx^2-b^2*Dx+b^2*x = (Dx-x)*(Dx-b)*(Dx+b);
Even in cases where dsolve cannot find solutions for all the factors, it can still return a reduction of order expressed using a DESol structure. For example, for
ode := diff(y(x),x$3) + (x^3-x)*diff(y(x),x$2) - (x^4+3)*diff(y(x),x) - (x^3-x)*y(x);
we have
that is, a reduction of order by one, since, in the factorization
DEtools[DFactor]((11), [Dx,x]);
dsolve only succeeded in solving the right factor (the left factor has no Liouvillian solutions).
See Also
DEtools, diffop, dsolve,education, PDEtools
Download Help Document