Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
algcurves[Weierstrassform] - compute a normal form for elliptic or hyperelliptic curves
Calling Sequence
Weierstrassform(f, x, y, x0, y0, opt)
Parameters
{f}
-
polynomial in x and y representing a (hyper)-elliptic curve
x, y, x0, y0
variables
opt
(optional) a sequence of options
Description
A curve f is called elliptic if the genus is 1. An algebraic function field is isomorphic to the field where f0 is of the form y0^2 + square-free polynomial in x0 of degree 3 if and only if the curve is elliptic.
For a hyperelliptic curve with genus g there exists a similar normal form: a squarefree polynomial in x0 of degree or .
This procedure computes such normal form f0. It also gives an isomorphism from to by giving the images of x0 and y0. The inverse isomorphism will also be computed, unless the option `no inverse` is used.
The output is a list of 5 items:
The curve f0
The image of x0 under this isomorphism
The image of y0 under this isomorphism
The image of x under the inverse isomorphism
The image of y under the inverse isomorphism
For a description of the method in the elliptic case see M. van Hoeij, "An algorithm for computing the Weierstrass normal form", ISSAC'95 Proceedings, p. 90-95 (1995). For the hyperelliptic case, see: http://arXiv.org/abs/math.AG/0203130
The analogue of this procedure for curves of genus zero is parametrization.
A regular point on the curve can be specified as a 6th argument. In some cases this can speed up the computation. In the genus 1 case the option Weierstrass results in a Weierstrass normal form, i.e. .
If the curve is not elliptic (which can be verified by computing the genus) nor hyperelliptic (which can be verified with is_hyperelliptic then an error message will be given. If the curve is reducible, which can be checked with evala(AFactor(f)), then the normal form does not exist and Weierstrassform will fail.
Examples
Check if the image of x and y still satisfy the relation f in the field
Check if the image of x0 and y0 still satisfy the relation f0 in the field
A curve with genus 2:
See Also
algcurves, algcurves[genus], algcurves[is_hyperelliptic], algcurves[j_invariant], algcurves[parametrization]
Download Help Document