Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Zeta - The Riemann Zeta function; the Hurwitz Zeta function
Calling Sequence
Zeta(z)
Zeta(n, z)
Zeta(n, z, v)
Parameters
n
-
algebraic expression; understood to be a non-negative integer
z
algebraic expression
v
algebraic expression; understood not to be a non-positive integer
Description
The Zeta function (zeta function) is defined for Re(z)>1 by
and is extended to the rest of the complex plane (except for the point z=1) by analytic continuation. The point z=1 is a simple pole.
The call Zeta(n, z) gives the nth derivative of the Zeta function,
You can enter the command Zeta using either the 1-D or 2-D calling sequence. For example, Zeta(1, 1/2) is equivalent to .
The optional third parameter v changes the expression of summation to 1/(i+v)^z, so that for Re(z)>1,
and, again, this is extended to the complex plane less the point 1 by analytic continuation. The point z=1 is a simple pole for the function Zeta(0, z, v).
The third parameter, v, can be any complex number which is not a non-positive integer.
The function Zeta(0, z, v) is often called the Hurwitz Zeta function or the Generalized Zeta function.
Examples
See Also
initialfunctions, JacobiZeta, PolynomialTools[Hurwitz]
References
Erdelyi, A. Higher Transcendental Functions. McGraw-Hill, 1953. Vol. 1.
Download Help Document