Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[Hypergeometric][ZpairDirect] - perform direct algorithm to construct Zeilberger's recurrences for rational functions
Calling Sequence
ZpairDirect(F, n, k, En)
Parameters
F
-
rational function of n and k
n
name
k
En
name; denote the shift operator with respect to n
Description
Let F be a rational function of n and k, En the shift operator with respect to n defined by . The ZpairDirect(F, n, k, En) command computes a Z-pair such that
The output from ZpairDirect is a list of two elements representing the computed Z-pair provided such a pair exists.
The main distinction between ZpairDirect and Zeilberger's algorithm is that Zeilberger's algorithm uses an item-by-item examination technique for the order of the computed difference operator L. For more information, see Zeilberger.
The function ZpairDirect, on the other hand, uses a direct algorithm to construct a Z-pair for F. It first determines if there exists a Z-pair for F. If the answer is positive, it computes a Z-pair directly. Otherwise, it gives the conclusive error message ``there does not exist a Z-pair for F'' where F is the input rational function. When the Zeilberger routine is used, and if the input hypergeometric term T is also a rational function, ZpairDirect is invoked.
For the ZpairDirect routine, the input F must be a rational function.
Note: If you set infolevel[ZpairDirect] to 3, Maple prints diagnostics.
Examples
Set the infolevel to 3.
ZpairDirect: "Check for the existence of a Z-pair" ZpairDirect: "There exists a Z-pair" ZpairDirect: "Start computing a Z-pair for the given rational function"
If the routine cannot determine a Z-pair, Maple returns an error.
Error, (in SumTools:-Hypergeometric:-ZpairDirect) there does not exist a Z-pair for 1/(k^5+k^3*n+3*k^3-5*n*k^2-2*k^2-5*n^2-17*n-6)
See Also
infolevel, SumTools[Hypergeometric], SumTools[Hypergeometric][IsZApplicable], SumTools[Hypergeometric][MinimalZpair], SumTools[Hypergeometric][Zeilberger]
References
Le, H.Q. "A Direct Algorithm to Construct Zeilberger's Recurrences for Rational Functions." Proceedings FPSAC'2001, pp. 303-312. 2001.
Download Help Document