Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
SumTools[Hypergeometric][RationalCanonicalForm] - construct four rational canonical forms of a rational function
Calling Sequence
RationalCanonicalForm[1](F, n)
RationalCanonicalForm[2](F, n)
RationalCanonicalForm[3](F, n)
RationalCanonicalForm[4](F, n)
Parameters
F
-
rational function of n
n
variable
Description
Let F be a rational function of n over a field K of characteristic 0. The RationalCanonicalForm[i](F,n) calling sequence constructs the ith rational canonical forms for F, .
If the RationalCanonicalForm command is called without an index, the first rational canonical form is constructed.
The output is a sequence of 5 elements , called , where z is an element of K, and are monic polynomials over K such that:
.
for all integers k.
, .
Note: E is the automorphism of K(n) defined by .
The five-tuple that satisfies the three conditions is a strict rational normal form for F. The rational functions and are called the kernel and the shell of an , respectively.
Let be any RNF of a rational function F. Then the degrees of the polynomials r and s are unique, and have minimal possible values in the sense that if where p, q are polynomials in n, and G is a rational function of n, then and .
If then is minimal.
If then is minimal, and under this condition, is minimal.
Examples
Check the result from RationalCanonicalForm[1].
Condition 1 is satisfied.
Condition 2 is satisfied.
Condition 3 is satisfied.
Degrees of the kernel:
The degree of v1 is minimal.
The degree of u2 is minimal.
For , the degree of the shell is minimal.
See Also
evalb, LREtools[dispersion], subs, SumTools[Hypergeometric], SumTools[Hypergeometric][EfficientRepresentation], SumTools[Hypergeometric][MultiplicativeDecomposition], SumTools[Hypergeometric][PolynomialNormalForm], SumTools[Hypergeometric][SumDecomposition]
References
Abramov, S.A.; Le, H.Q.; and Petkovsek, M. "Rational Canonical Forms and Efficient Representations of Hypergeometric Terms." Proc. ISSAC'2003, pp. 7-14. 2003.
Abramov, S.A., and Petkovsek, M. "Canonical representations of hypergeometric terms." Proc. FPSAC'2001, pp. 1-10. 2001.
Download Help Document