Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Student[LinearAlgebra][Norm] - compute the p-norm of a Matrix or Vector
Calling Sequence
Norm(A, p, options)
Parameters
A
-
Matrix or Vector
p
(optional) non-negative number, infinity, Euclidean, or Frobenius; norm selector that is dependent upon A
options
(optional) parameters; for a complete list, see LinearAlgebra[Norm]
Description
The Norm(A) command computes the Euclidean (2)-norm of A.
Note: The default norm in the top-level LinearAlgebra package is the infinity norm, as that norm is faster to compute for Matrices.
The allowable values for the norm-selector parameter, p, depend on whether A is a Vector or a Matrix.
Vector Norms
If V is a Vector and p is included in the calling sequence, p must be one of a non-negative number, infinity, Frobenius, or Euclidean.
The p-norm of a Vector V when is .
The infinity-norm of Vector V is .
Maple implements Vector norms for all . For the final pth root computation is not done, that is, the calculation is . This defines a metric on , but the pth root is not a norm and the form computed by Norm in such cases is more useful. The limiting case of returns the number of nonzero elements of V (this is a floating-point number if p or any element of V is a floating-point number).
For Vectors, the 2-norm can also be specified as either Euclidean or Frobenius.
Matrix Norms
If A is a Matrix and p is included in the calling sequence, p must be one of 1, 2, infinity, Frobenius, or Euclidean.
The p-norm of a Matrix A is max(Norm(A . V, p)), where the maximum is calculated over all Vectors V with Norm(V, p) = 1. Maple implements only Norm(A, p) for and the special case (which is not actually a Matrix norm; the Matrix A is treated as a "folded up" Vector). These norms are defined as follows.
Norm(A, 1) = max(seq(Norm(A[1..-1, j], 1), j = 1 .. ColumnDimension(A)))
Norm(A, infinity) = max(seq(Norm(A[i, 1..-1], 1), i = 1 .. RowDimension(A)))
Norm(A, 2) = sqrt(max(seq(Eigenvalues(A . A^%T)[i], i = 1 .. RowDimension(A))))
Norm(A, Frobenius) = sqrt(add(add((A[i,j]^2), j = 1 .. ColumnDimension(A)), i = 1 .. RowDimension(A)))
For Matrices, the 2-norm can also be specified as Euclidean.
Examples
See Also
LinearAlgebra[Norm], Student[LinearAlgebra], Student[LinearAlgebra][Normalize], Student[LinearAlgebra][Operators]
Download Help Document