Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Student[LinearAlgebra][IsDefinite] - test for positive or negative definite Matrices
Calling Sequence
IsDefinite(A, q)
Parameters
A
-
square Matrix
q
(optional) equation of the form query = attribute where attribute is one of 'positive_definite', 'positive_semidefinite', 'negative_definite', or 'negative_semidefinite'
Description
The IsDefinite(A, query = 'positive_definite') returns true if is a real symmetric or a complex Hermitian Matrix and all the eigenvalues are determined to be positive. This command is equivalent to IsDefinite(A), that is, the default query is for positive definiteness.
Similarly, for real symmetric or complex Hermitian Matrices, the following calling sequences return the indicated result.
IsDefinite(A, query = 'positive_semidefinite') returns true if all the eigenvalues are determined to be non-negative.
IsDefinite(A, query = 'negative_definite') returns true if all the eigenvalues are determined to be negative.
IsDefinite(A, query = 'negative_semidefinite') returns true if all the eigenvalues are determined to be non-positive.
If the eigenvalues are determined to be other than described in the cases above, a value of false is returned.
If any of the conditions on the eigenvalues cannot be resolved, a boolean expression representing the condition which must be satisfied for the query to resolve to "true" is returned.
The definition of positive definite is that, for all column Vectors , , where is the Hermitian transpose of .
The definitions for positive semidefinite, negative definite, and negative semidefinite involve reversal of the inequality sign, or relaxation from a strict inequality.
For real non-symmetric (complex non-Hermitian) Matrices, definiteness is established by considering the symmetric (Hermitian) part of , that is, ().
Examples
See Also
LinearAlgebra[IsDefinite], Student[LinearAlgebra], Student[LinearAlgebra][DiagonalMatrix], Student[LinearAlgebra][Eigenvalues], Student[LinearAlgebra][Eigenvectors], Student[LinearAlgebra][Operators]
Download Help Document