Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Overview of Computation in Student[LinearAlgebra]
For a general introduction to the LinearAlgebra subpackage of the Student package and a list of the linear algebra computation routines, see Student[LinearAlgebra].
The computation routines in the Student[LinearAlgebra] subpackage are interfaces to the corresponding routines in the top-level LinearAlgebra package. There are two principal differences that these interfaces implement, however.
First, the top-level LinearAlgebra routines use hardware floating-point computations whenever possible. While this is important for large scale problems, it is potentially confusing, so in the Student[LinearAlgebra] subpackage this feature is turned off by default.
Second, the top-level LinearAlgebra routines generally treat symbols as complex-valued rather than real-valued. For example, a calculation such as results in complex conjugates being applied to some of the symbols. Again, this working environment, while important in the context of the full Maple program, is less essential in the Student[LinearAlgebra] context, and symbols are generally treated as real-valued in this package.
To use hardware floating-point computations and treat symbols as complex-valued, use the SetDefault command in the Student[LinearAlgebra] subpackage. Local control is available for the complex-versus-real assumption by appropriate use of the conjugate option on relevant Student[LinearAlgebra] commands. This local control is not available for the hardware-versus-software floating-point context. These variations are illustrated in the following examples.
with(Student[LinearAlgebra]):
Normal usage:
Norm(<a,b>, 2);
To assume that the symbols are complex for a particular computation:
Norm(<a,b>, 2, conjugate);
To assume that symbols are complex in any computation:
SetDefault(conjugate = true);
Normal floating-point computation:
<1.2,3.4> . <1.3,4.2>;
For floating-point computations to take place in hardware whenever possible:
SetDefault(hardwarefloats=true);
There is special notation for the transpose and Hermitian transpose operations for Matrices and Vectors: computes the transpose of , where is a Matrix or Vector (or scalar); and computes the Hermitian (conjugate) transpose of .
A := <<a,b>|<c,d>|<e,f>>;
v := <a | b | c>;
A^+, v^+;
A^*, v^*;
See Also
LinearAlgebra Computation Example Worksheet, Student, Student[LinearAlgebra], Student[LinearAlgebra][InteractiveOverview], Student[LinearAlgebra][VisualizationOverview]
Download Help Document