Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Statistics[Distributions][NonCentralBeta] - noncentral beta distribution
Calling Sequence
NonCentralBeta(nu, omega, delta)
NonCentralBetaDistribution(nu, omega, delta)
Parameters
nu
-
first shape parameter
omega
second shape parameter
delta
noncentrality parameter
Description
The noncentral beta distribution is a continuous probability distribution with probability density function given by:
subject to the following conditions:
The NonCentralBeta variate with noncentrality parameter delta=0 and shape parameters nu and omega is equivalent to the Beta variate with shape parameters nu and omega.
Note that the NonCentralBeta command is inert and should be used in combination with the RandomVariable command.
Notes
The Quantile and CDF functions applied to a noncentral beta distribution use a sequence of iterations in order to converge upon the desired output point. The maximum number of iterations to perform is equal to 100 by default, but this value can be changed by setting the environment variable _EnvStatisticsIterations to the desired number of iterations.
Examples
See Also
Statistics, Statistics[Distributions], Statistics[RandomVariable]
References
Evans, Merran; Hastings, Nicholas; and Peacock, Brian. Statstical Distributions. 3rd ed. Hoboken: Wiley, 2000.
Johnson, Hormal L.; Kotz, Samuel; and Balakrishnan, N. Continuous Univariate Distributions. 2nd ed. 2 vols. Hoboken: Wiley, 1995.
Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.
Download Help Document