Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
Slode[rational_series_sol] - formal power series solutions with rational coefficients for a linear ODE
Calling Sequence
rational_series_sol(ode, var,opts)
rational_series_sol(LODEstr,opts)
Parameters
ode
-
linear ODE with polynomial coefficients
var
dependent variable, for example y(x)
opts
optional arguments of the form keyword=value
LODEstr
LODEstruct data structure
Description
The rational_series_sol command returns one formal power series solution or a set of formal power series solutions of the given linear ordinary differential equation with polynomial coefficients. The ODE must be either homogeneous or inhomogeneous with a right-hand side that is a polynomial, a rational function, or a "nice" power series (see LODEstruct) in the independent variable .
If ode is an expression, then it is equated to zero.
The routine returns an error message if the differential equation ode does not satisfy the following conditions.
ode must be linear in var
ode must have polynomial coefficients in
ode must be homogeneous or have a right-hand side that is rational or a "nice" power series in
The coefficients of ode must be either rational numbers or depend rationally on one or more parameters.
A homogeneous linear ordinary differential equation with coefficients that are polynomials in has a linear space of formal power series solutions where is one of , , , or , is the expansion point, and the sequence satisfies a homogeneous linear recurrence. In the case of an inhomogeneous equation with a right-hand side that is a "nice" power series, satisfies an inhomogeneous linear recurrence.
The routine selects such formal power series solutions where is a rational function for all sufficiently large .
Options
x=a or 'point'=a
Specifies the expansion point in the case of a homogeneous equation or an inhomogeneous equation with rational right-hand side. The default is . It can be an algebraic number, depending rationally on some parameters, or . In the case of a "nice" series right-hand side the expansion point is given by the right-hand side and cannot be changed.
If this option is given, then the command returns one formal power series solution at a with rational coefficients if it exists; otherwise, it returns NULL. If a is not given, it returns a set of formal power series solutions with rational coefficients for all possible points that are determined by Slode[candidate_points](ode,var,'type'='rational').
'free'=C
Specifies a base name C to use for free variables C[0], C[1], etc. The default is the global name _C. Note that the number of free variables may be less than the order of the given equation if the expansion point is singular.
'index'=n
Specifies a name for the summation index in the power series. The default value is the global name _n.
Examples
An inhomogeneous equation:
See Also
LODEstruct, Slode, Slode[candidate_points], Slode[hypergeom_series_sol], Slode[polynomial_series_sol]
Download Help Document