Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[FastArithmeticTools][SubresultantChainSpecializationCube] - evaluation of the subresultant chain of two polynomials
Calling Sequence
SubresultantChainSpecializationCube(f1, f2, v, R, theoption)
Parameters
R
-
polynomial ring
f1
polynomial of R
f2
v
variable of R
theoption
integer, choice of two strategies
Description
The call SubresultantChainSpecializationCube(f1, f2, v, R, theoption) returns a data-structure which stores images of the subresultant chain of f1 and f2 specialized at enough good values in order to interpolate the subresultants of f1 and f2.
f1 and f2 must have main variable v and must hold.
Moreover R must have a prime characterisitic such that FFT-based polynomial arithmetic can be used for this actual computation. The higher the degrees of f1 and f2 are, the larger must be such that divides . If the degree of f1 or f2 is too large, then an error is raised.
This data-structure can be used to compute the resultant of f1 and f2 with respect to v, by means of the command ResultantBySpecializationCube.
This data-structure can also be used to compute a GCD of f1 and f2 modulo the saturated ideal of a regular chain, by means of the command RegularGcdBySpecializationCube.
If theoption is then fast interpolation based on subproduct tree is used. Otherwise a multi-dimensional-FFT-based approach is tried, since it is generally faster and uses less memory. If this latter failed then finally, the subproduct tree technique is used.
By good specialization value, one means here a point at which the initials of f1 and f2 do not vanish.
The reason why the multi-dimensional-FFT-based specialization scheme can fail is because it is hard in general to find good specialization values that are powers of primitive roots of unity. In some exceptional cases, the subproduct tree approach can also fail finding good specialization values; if this happens an error is raised.
Examples
Define a ring of polynomials.
Define two polynomials of R.
Compute images of the subresultant chain of sufficiently many points in order to interpolate. Multi-dimensional TFT is used to evaluate and interpolate since 1 is passed as fifth argument
Interpolate the resultant from the SCube
Define a regular chain with r2. Note that r2 is not required to be squarefree.
Compute a regular GCD of f1 and f2 modulo rc
See Also
RegularChains, RegularGcdBySpecializationCube, ResultantBySpecializationCube
Download Help Document