Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ParametricSystemTools][Specialize] - specialize a list of regular chains at a point
Calling Sequence
Specialize(pt, lrc, R)
Parameters
pt
-
point with coordinates in rational number field or a finite field
lrc
list of regular chains
R
polynomial ring
Description
The command Specialize(pt, lrc, R) returns a list of regular chains obtained from those of lrc by specialization at the point pt.
The point pt is given by a list of rational numbers or a list of elements in a finite field; moreover, the number of coordinates in pt must be less than or equal to the number of variables of R.
All polynomials in each regular chain of lrc are evaluated at the last variables of R using the corresponding coordinates of pt.
Regular chains in lrc must specialize well at pt, otherwise an error message displays.
This command is part of the RegularChains[ParametricSystemTools] package, so it can be used in the form Specialize(..) only after executing the command with(RegularChains[ParametricSystemTools]). However, it can always be accessed through the long form of the command by using RegularChains[ParametricSystemTools][Specialize](..).
Examples
The following example shows how to analyze the output of a comprehensive triangular decomposition.
The first part is a list of regular chains which form a pre-comprehensive triangular decomposition of F. The second part is a partition of the projection image of V(F) to the last coordinate. Each constructible set is associated with indices of regular chains in the first part.
Consider a specialization point .
Try to figure out to which partition pt belongs.
Then retrieve the indices of regular chains that specialize well at pt.
Thus you know that the regular chains in lrc_ind all specialize well at the point pt. Then you can do simple substitutions.
Regular chains of form a triangular decomposition of F after specialization at pt.
See Also
BelongsTo, ComprehensiveTriangularize, ConstructibleSet, Info, ParametricSystemTools, PreComprehensiveTriangularize, RegularChains
Download Help Document