Maple Professionel
Maple Académique
Maple Edition Étudiant
Maple Personal Edition
Maple Player
Maple Player for iPad
MapleSim Professionel
MapleSim Académique
Maple T.A. - Suite d'examens de classement
Maple T.A. MAA Placement Test Suite
Möbius - Didacticiels de mathématiques en ligne
Machine Design / Industrial Automation
Aéronautique
Ingénierie des véhicules
Robotics
Energie
System Simulation and Analysis
Model development for HIL
Modélisation du procédé pour la conception de systèmes de contrôle
Robotics/Motion Control/Mechatronics
Other Application Areas
Enseignement des mathématiques
Enseignement de l’ingénierie
Enseignement secondaire et supérieur (CPGE, BTS)
Tests et évaluations
Etudiants
Modélisation financière
Recherche opérationnelle
Calcul haute performance
Physique
Webinaires en direct
Webinaires enregistrés
Agenda des évènements
Forum MaplePrimes
Blog Maplesoft
Membres Maplesoft
Maple Ambassador Program
MapleCloud
Livres blancs techniques
Bulletin électronique
Livres Maple
Math Matters
Portail des applications
Galerie de modèles MapleSim
Cas d'Etudes Utilisateur
Exploring Engineering Fundamentals
Concepts d’enseignement avec Maple
Centre d’accueil utilisateur Maplesoft
Centre de ressources pour enseignants
Centre d’assistance aux étudiants
RegularChains[ParametricSystemTools][DiscriminantSequence] - Compute the discriminant sequence of a polynomial
Calling Sequence
DiscriminantSequence(p, v, R)
DiscriminantSequence(p, q, v, R)
Parameters
R
-
polynomial ring
p
polynomial of R
q
v
variable of R
Description
When input is only one polynomial p, the result of this function call is the list of polynomials in R which is the discriminant sequence of p regarded as a univariate polynomial in v; otherwise the discriminant sequence of p and q.
For a univariate polynomial p of degree n, its discriminant sequence is a list of n polynomials in the coefficients of p. The signs of these polynomials determine the number of distinct complex (real) zeros of p. The discriminant sequence of two polynomials p and q, together with the discriminant sequence of p, can help determining the number of distinct real roots of p=0 such that q>0 or q<0. For the details, please see the reference listed below.
Examples
See Also
BorderPolynomial, ComplexRootClassification , RealRootClassification, RegularChains
References
Yang, L., "Recent advances in determining the number of real roots of parametric polynomials", J. Symb. Compt. vol. 28, pp. 225--242, 1999.
Download Help Document